Автономному дому свою микро ТЭЦ

Сегодня мы поговорим про автономное электричество, какое оно бывает, как оборудовать дом таким источником электроэнергии, как проводить подбор оптимальных систем. И самое главное, «стоит ли овчинка выделки».

Особенности подключения к сетям ЛЭП

Без электричества сейчас трудно представить комфортабельное жилье. Благодаря ему жилище освещается, обогревается, выполняется готовка пищи, и нагрев воды. Вот только далеко не всегда есть возможность обеспечить электричеством жилье, особенно если дом находится далеко от города.

Многим владельцам загородных домов и дачных участков, особенно если они находятся далеко от цивилизации, приходится решать вопрос с энергообеспечением дома.

Самым распространенным решением является подключение дома к сетям ЛЭП, однако они далеко не везде имеются или же ближайшая линия находится на приличном удалении от дома.

В таком случае обеспечение электричеством дома может оказаться очень дорогим удовольствием. Ведь придется согласовывать вопросы по поставкам этого источника энергии с соответствующими органами, оплачивать установку подстанции и опор ЛЭП для подведения к дому.

И особенно неприятно то, что приобретаемое оборудование, причем за немалые деньги (подстанция, провода, опоры) перейдут на баланс местных энергосетей, то есть владельцем всего будут являться они, а владельцу дома еще придется и платить за поставки электроэнергии.

Поэтому такой вариант для многих может стать нецелесообразным, достаточно хлопотным и дорогостоящим.

Автономные источники электроэнергии

Второй вариант обеспечить загородный дом электричеством – использовать автономные источники энергообеспечения. Такими источниками могут стать ветер, солнце, вода и горючие материалы.

Используя автономное энергообеспечение, владелец дома становится полностью независимым в плане получения электроэнергии для потребления.

Не требуется никаких согласований, протяжки ЛЭП и т. д. Конечно, получение электроэнергии все равно будет связано затратами. И на начальном этапе они будут достаточно весомыми, поскольку необходимое оборудование стоит немало.

В дальнейшем необходимо еще и проведение обслуживания всех составляющих системы энергообеспечения, но в итоге все окупиться.

Коротко рассмотрим самые распространенные автономные источники электроэнергии.

Солнечные панели

Сейчас все большую популярность завоевывают солнечные источники электроэнергии. Суть такого источника проста – имеются полупроводниковые фотоэлементы, в которых при попадании на них солнечных лучей генерируется электрический заряд.

Количество вырабатываемой энергии напрямую зависит от площади фотоэлементов, поэтому они собираются в панели.

Панель площадью в 1 м. кв. способна выдать 100 Ватт мощности с напряжением 20-25 В.

Чтобы полностью обеспечить дом электричеством площадь панелей должна быть значительной.

Из положительных качеств такого источника электроэнергии является его долговечность, полная экологичность, бесшумность.

Панели требуют минимум обслуживания, а электроэнергия, выработанная ими, является полностью бесплатной и доступной.

Но есть и недостатки. Для обеспечения электроэнергии в необходимом количестве, площадь панелей может достигать значительных размеров, которые еще нужно и правильно расположить.

Энергия эта непостоянна. В солнечные дни панели будут работать с максимальным выходом, но бывают же и пасмурные дни. Поэтому общее количество выработанной электрической энергии зависит от того, сколько солнечных дней в году в регионе, где располагается дом.

Еще один недостаток, причем весомый – это стоимость панелей. Цена за каждый Ватт выработанной энергии составляет сейчас примерно 1,5 $, то есть только за панели, вырабатывающие 1 кВт электроэнергии, придется выложить 1,5 тыс. долларов. А еще потребуется покупать и остальное оборудование, необходимое для работы системы.

Ветроэлектрические установки

Вторая по популярности автономная система энергообеспечения – ветряная. Для получения электроэнергии используются ветрогенераторы.

По сути, это обычные генераторы, на ротор которых надеты лопасти. За счет ветра ротор вращается и происходит генерация электричества.

Из положительных качеств ветрогенераторов отмечается достаточно компактные размеры, относительная бесшумность работы, экологичность, долговечность. Также существует возможность самодельного изготовления такого генератора.

Но недостатков у ветряной системы больше. Первый из них – стоимость, обойдутся ветряные генераторы не дешево.

Учитывая то, что КПД ветрогенераторов невысокая, то для полного обеспечения дома электричеством, потребуется установка трех и более ветряков небольшой мощности или же одного, но достаточно производительного. И в обоих случаях затраты на приобретение будут значительными.

Опять же необходимо учитывать и климатические условия. В зонах, где средний годовой показатель скорости ветра не превышает 8 м/с, использовать ветрогенераторы будет нецелесообразно, поскольку они неспособны будут работать в оптимальном режиме.

Стоит также учитывать, что в дни полнейшего безветрия можно остаться без электричества, поэтому использовать ветряную автономную систему энергообеспечения лучше, если имеется резервный источник электроэнергии.

Топливные генераторные установки

Резервным источником электроэнергии могут стать генераторы, работающие на жидком или газообразном топливе (бензин, дизтопливо, газ).

Здесь все просто: установка состоит из двигателя внутреннего сгорания и генератора. Двигатель вращает ротор, и генератор вырабатывает энергию.

Полностью автономной такую систему назвать нельзя, все-таки необходимо топливо, которое еще и дорожает постоянно. Но как резервный источник электроэнергии такие генераторные установки являются самыми оптимальными.

В случае, когда пасмурная погода стоит уже несколько дней или же наблюдается безветрие, всегда можно запустить генераторную установку для восполнения заряда батарей.

Из положительных качеств генераторных установок, работающих от топлива, отмечается постоянная доступность электроэнергии, такие установки сравнительно дешевые, они обеспечивают хороший выход энергии.

К недостаткам же их относится потребность в топливе, что обеспечивает постоянные затраты. Такие установки не могут работать длительный период, а двигатели внутреннего сгорания требуют технического обслуживания.

Также для использования генераторных установок необходимо отведение отдельного помещения и организацию отвода выхлопных газов, ну и, естественно, ни о какой экологичности и речи быть не может.

Гидроэлектростанции

Реже всего в качестве автономного источника питания используется гидроэлектростанция по одной простой причине, далеко не у всех возле дома протекает река или мощный ручей.

Суть работы такой станции заключается в том, что вода вращает лопасти турбины, за счет чего генератор вырабатывает электричество.

Положительные качества гидростанций таковы: стабильная подача энергии круглосуточно, поскольку вода в реке или ручье не замедляет скорость движения. Такие станции полностью экологичны, долговечны и практически не требуют обслуживания.

Главным же их недостатком является необходимость установки на берегу реки или возле ручья. При этом скорость движения воды должна быть высокая.

Гидростанция способна вырабатывать энергию и при медленном движении воды, но в таком случае река зимой будет покрываться льдом, и использовать станцию уже не получиться.

Большая же скорость воды будет являться гарантией того, что река или ручей не перемерзнут. Второй недостаток – стоимость станции.

И все же концепция обеспечения дома автономной системой энергообеспечения является перспективной и многие ею интересуются.

Выше мы рассмотрели основные виды источников электричества, но их одних недостаточно, чтобы в доме была электроэнергия.

Дополнительно стоит отметить, что эффективность любой автономной системы зависит от правильности расчетов.

Особенности установки и эксплуатации автономных источников

Перед тем как приобретать и устанавливать любую из систем, нужно правильно произвести все необходимые расчеты ведь со временем количество потребителей электроэнергии в доме может увеличиться, к примеру вы решите установить систему обогрева кровли и водостоков и это нужно учесть в расчетах.

Рассмотрим для начала на примере солнечной системы.

Солнечная автономная система.

Все расчеты нужно начинать с подсчетов суммарного потребления электроэнергии в доме, то есть подсчитать мощность всех потребителей. При этом важно их разделить.

Дело в том, что часть потребителей электроэнергии без проблем работают от сети с постоянным током и напряжением в 12 или 24 В. Такими потребителями могут быть те же светодиодные лампы, которые лучше установить вместо обычных ламп накаливания. Да и вообще, все работы следует начинать с оснащения дома экономичными потребителями электроэнергии.

Исходя из суммарной мощности потребления тока, производится подбор аккумуляторных батарей и инвертора. И только после этого переходят к подсчету количества солнечных панелей, а также подбора контроллера.

Можно и не заниматься вычислением площади солнечных панелей, емкостью АКБ и инвертора.

Многие производители предлагают уже готовые комплекты, включающие все необходимое оборудование. При приобретении такого комплекта достаточно знать только суммарное потребление электроэнергии.

Причем при выборе комплекта важно учитывать, чтобы у него имелся некий запас по мощности, чтобы вся система не работала на предельных значениях. Общая стоимость такой системы во многом зависит от ее мощности.

Монтаж солнечной батареи несложен.

Достаточно правильно выбрать место установки панелей, контроллера, АКБ и инвертора. Затем следует все правильно подсоединить.

Что касается техники безопасности при использовании такой системы, то сводится она к правильности размещения АКБ. Они хоть и являются герметичными и необслуживаемыми, но для них лучше отвести отдельное помещение, причем вентилируемое.

Важно обратить внимание на надежность крепления всех составных элементов, использование соответствующей проводки и правильности подключения элементов в систему.

Ветряная система.

С расчетов начинается и установка ветрогенераторов. Все начинается с расчета суммарной мощности потребителей электроэнергии. Исходя из этого уже и подбирается комплект, включающий все необходимое – ветроэлектрическую установку (ВЭУ), контроллер, АКБ, инвертор и остальные комплектующие.

При использовании такой системы важно подобрать место установки ВЭУ. Ветряки при работе издают шум, хоть и несильный, поэтому рекомендуется их устанавливать на определенном удалении от дома.

Что касается безопасности, то здесь все сводится к правильному монтажу мачты ВЭУ, поскольку она достаточно высокая.

Далее же безопасность сводится к правильному подключению и эксплуатации системы.

Топливные генераторные установки.

Генераторные установки – самые простейшие по монтажу. После подсчета суммарного потребления электроэнергии просто подбирается необходимая по мощности станция, работающая на предпочтительном для владельца дома топливе.

Оборудуются генераторно-аккумуляторные-инверторные системы.

Но обычно такие станции продаются отдельно, поэтому придется правильно подобрать контроллер, комплект АКБ и инвертор.

При использовании такой системы условия безопасности строже, чем у других систем.

Во-первых, генераторную установку необходимо устанавливать в отдельном помещении.

Во-вторых, должна быть организована система отвода отработанных газов.

В-третьих, должна соблюдаться правильность хранения горючих материалов.

Системы энергообеспечения, в которых используется гидроэлектростанции, рассматривать не будем, поскольку они применяются редко.

Подбор оптимальной системы

Теперь немного о том, какую систему лучше использовать в разных случаях.

На дачном участке или загородном доме можно использовать любое автономное энергообеспечение. Все зависит от климатических условий.

В южных регионах, где много солнечных дней в году, предпочтительнее использовать солнечную систему энергообеспечения, в северных же районах – ветряную.

При этом лучше сразу делать комбинированную систему, чтобы имелся резервный источник питания, и для этого отлично подходят установки, работающие на топливе.

Что же касается городских условий, то для автономного обеспечения энергией квартиры подойдут только солнечная и ветряная системы, основные элементы которой (панели, ВЭУ) можно установить на крыше здания.

Другие же автономные системы в квартирных условиях использовать не получится.

Важно знать: Правила монтажа электропроводки в деревянном доме.

Подводим итог

Автономное электричество в доме является достаточно интересным решением. Но стоимость его пока достаточно высока, поэтому не всем будет по карману.

Но с другой стороны, при отсутствии подключения к промышленным ЛЭП, и больших расстояниях до цивилизации, лучше все же потратиться на автономное энергообеспечение, чем протянуть новую линию. Но в каждом отдельном случае хозяин дома принимает решение сам.

Плюсы автономного электроснабжения

Казалось бы, смысл в автономной системе электроснабжения только один – это когда рядом с домом нет ЛЭП, а тянуть собственную линию слишком дорого. Однако многие домовладельцы создают собственную систему электроснабжения даже в том случае, если уже подключены к общей системе.

Так в чем же выгода автономного электроснабжения?

  • В независимости. Своя система защитит от отключений электроэнергии по различным поводам. Автономная система тоже не застрахована от аварий и других неприятностей, но если создать дублирующие устройства, то защищённость от случайностей достигнет максимума.
  • В экономичности. Электроэнергия, подаваемая по единой системе, дорогая. Создание автономной системы тоже дело не дешёвое, но многие домовладельцы считают, что окупается она очень быстро, и столь же быстро становится делом не просто дешёвым, но и выгодным.
  • В мобильности. Автономная система, построенная на нескольких источниках электроэнергии, позволяет быстро реагировать на ситуацию, оставаясь при свете в любых ситуациях.

Какой источник автономного электроснабжения выбрать

Получить электроэнергию можно даже от печки. Однако, если учесть фактор затрат времени и сил, то всерьез можно рассматривать только те источники, которые могут работать сами по себе. По этой причине самыми популярными являются следующие способы обеспечения дома электричеством.

1. Генератор на жидком топливе

Например газовые генераторы доступны в самых разных вариантах, но использовать их в качестве постоянного источника электроэнергии в жилом доме не целесообразно. Причина заключается в:

  1. дороговизне горючего;
  2. шумности работы генератора;
  3. наличие выхлопных газов;
  4. необходимости выделения для генератора отдельного помещения или навеса.

Цены генераторов на жидком топливе начинаются от 30 тысяч рублей. Однако дешевизна полученной электроэнергии иллюзорная, поскольку должна быть умножена на стоимость топлива.

На фото газовый генератор HONDA HG 5500 (SE) мощностью 4.0кВт, цена 121 тысяч рублей

Солнечная электростанция

Солнечная электростанция не требует внимания и топлива. Единственное, что им нужно – это интенсивный свет, а поскольку это топливо природа поставляет не регулярно, то и мощные аккумуляторы. При наличии последних в условиях климата с большим количеством солнечных дней обеспечить дом электричеством вполне возможно.

Цены на комплект солнечной электростанции начинаются от 130 тысяч рублей. Окупаемость высокая, поскольку некоторые модели могут без проблем работать тридцать лет.


На фото «Солнечная дача» мощностью 1,6 кВт/400Ач/1000 Вт, цена 160 тысяч рублей за комплект

Ветрогенератор

Ветрогенераторы не менее популярны, чем солнечные батареи. Однако они еще более зависимы от капризов погоды, поэтому полагаться только на этот источник энергии можно не везде.

Самые простые ветрогенераторы стоят от 30 тысяч рублей. Их можно использовать для локальной выработки электроэнергии, но решить проблему полного энергоснабжения дома они не смогут. Более мощные ветряные генераторы для полноценного обеспечения жилища электричеством (от 3 кВт) обойдутся в 150 тысяч и выше.

Полноценный ветрогенератор мощностью 10 кВт стоит не менее 500 тысяч рублей. При среднем домашнем потреблении 250 кВт в месяц и цене 4 руб/кВт, такой ветряк будет окупаться более 40 лет

Мини гидроэлектростанция

Для мини ГЭС необходим водоток с небольшим перепадом высот для обеспечения эффекта падающей воды. В месте такого перепада устанавливается небольшая турбина, и электричество будет поступать в ваш дом постоянно, а главное – бесплатно. Под миниГЭС можно использовать естественный ручей или речку, а можно прорыть небольшой канал, проходящий через ваш участок. Однако такая ГЭС будет работать только в тёплое время года, потом придётся перейти на другие источники.

Если собирать гидроэлектрастанцию на 3-5 кВт из подручных материалов, то стоимость устройства не превысит 20 тысяч рублей

Альтернативные источники малой мощности

Сюда можно отнести электричество из земли и атмосферное электричество. Рассчитывать на полноценное элетроснабжение в обоих случаях не приходится, но для «дачных» нужд такие источник вполне пригодны.

Выводы

  1. Если потребление электричества не превышает 3-5 кВт/час, то выгоднее всего установить мини ГЭС и получатьэлектричество практически бесплатно. Для регионов, где часто бывают солнечные дни, также актуальны солнечные электростанции с высоким КПД.
  2. Если планируете потреблять от 10 кВт/час, то дешевле чем подключение к магистральному электроснабжению способов пока нет. Если возможности подключения нет, то делайте комбинированную систему исходя из индивидуальных возможностей и условий.

В статье показан вариант решения задачи комплексного энергоснабжения «малых» объектов от возобновляемых источников энергии с помощью единой энергоустановки – микро-ТЭЦ, работающей по гибридной схеме от ВИЭ.

С появлением новых разработок можно показать пример энергоснабжения «малых» объектов с помощью единой энергоустановки – микро-ТЭЦ, работающей по гибридной схеме от возобновляемых энергоисточников.

Такая энергоустановка, несмотря на свои малые размеры и мощность преобразуемой энергии, вполне способна обеспечить усадебный дом, дачу, небольшой туристический лагерь, другие подобные объекты и электричеством, и теплом, и горячей водой, и даже подогретым воздухом для сушки материалов и всяких выращенных или собранных плодов, ягод, фруктов, грибов и трав.

Конструкция микро-ТЭЦ подробно описана в публикации изобретения (патент РФ № 2608448, 2017 г.). Она представляет собой единый модуль, все компоненты которого могут быть изготовлены в заводских условиях, что позволит освоить их массовое производство и облегчить монтаж на месте их установки. В таком варианте она представлена на рис. 1.

Корпус теплоаккумулятора 1 является одновременно основанием и ветротепловой установки (ВТУ) 2 и солнечного коллектора-нагревателя (СКН) 3. Панели СКН расположены на освещаемых солнцем стенках теплоаккумулятора, которые выполнены из листового металла и являются лучепоглощающей поверхностью. Они имеют со стороны облучения селективное покрытие и прозрачное теплоизолирующее ограждение. Панели могут быть оснащены расположенными над ними козырьками 4 с зеркальной нижней поверхностью, являющимися к тому же и защитой панелей от атмосферных осадков. Угол наклона козырьков должен обеспечивать максимальное дополнительное солнечное облучение панелей в зимний период.

Остальная поверхность теплоаккумулятора, кожух теплообменника турбинного агрегата, а также трубопроводы внешнего теплообменного контура имеют теплоизоляционное покрытие, например, известными органосиликатными составами «Силтэк», «Броня», «Корунд» и т.п.

Предпочтительным вариантом ВТУ в конструкции рассматриваемой микро-ТЭЦ представляется только что запатентованный в России (патент № 2623637) ветротепловой преобразователь с вертикальным валом, имеющий корпус, выполненный в форме улитки, турбину с ротором в виде усеченного конуса, оснащенным желобчатыми лопастями, а выходным каналом является раструб 5, расположенный над корпусом турбины и одновременно являющийся флюгером для ориентации ветроустановки входным конфузором 6 навстречу ветровому потоку. И конфузор, и раструб выполнены в виде жестких каркасов с легкой оболочкой.

Широкий фронт захвата потока воздуха с его сжатием и последующим закручиванием в улитке корпуса, где он одновременно воздействует на все лопасти турбины и затем удаляется через раструб (в основном – силой разрежения, создаваемого в нем обтекающим ветром), обеспечивает предельно высокий к.п.д. преобразования энергии ветра в механическую энергию.

Входной конфузор ветропреобразователя оснащен своеобразной защитой от запредельных ветровых нагрузок, при которых его боковые стенки синхронно раскрываются и переходят во флюгерное положение, но ветроустановка продолжает работу на «малом фронте» ветрового потока. В ближайшей безветренной паузе стенки под действием пружин возвращаются и фиксируются в исходном положении (см. вид сверху – на рис. 1).

Механическая энергия превращается в тепловую теплогенератором в виде осевого вентилятора с изменяющимся наклоном лопастей в зависимости от скорости ветрового потока, датчик 7 которого связан с механизмом изменения их наклона, чем и поддерживается постоянство оптимального соотношения скоростей вращения турбины и вихревого потока (примерно 1:2). При кратковременных перерывах ветра лопасти складываются в диск, нагрузка на турбине резко падает и она продолжает вращение по инерции до возобновления ветра, сокращая время на свою раскрутку.

Далее, часть тепловой энергии преобразуется в электрическую паротурбинным блоком 8 с электрическим генератором 9.

Для нормальной работы микро-ТЭЦ необходимо в верхней части внутреннего пространства теплоаккумулятора иметь температуру воздуха, значительно превышающую температуру кипения рабочей жидкости при рабочем давлении пара. И такая температура создается ветротепловой установкой и солнечным коллектором-нагревателем. При использовании чистого воздухопроницаемого теплоаккумулирующего материала предельная температура его нагрева ограничена только балансом между запасенным да поступающим теплом, создаваемым первичными преобразователями энергии, и его расходом с учётом всех теплопотерь.

При этом нагрев теплоаккумулирующего материала по всему его объёму осуществляется принудительной – от ВТУ – и естественной – от СКН – циркуляцией воздуха. Принудительная циркуляция нагревает материал, как в известной аэродинамической сушильной камере, только температура нагрева может намного превышать требуемую для испарения влаги, которой в нашем теплоаккумуляторе, конечно же, нет. А солнечные панели с их минимальными внешними теплопотерями только усилят при солнечном облучении этот нагрев. При наличии отражающих козырьков этот эффект возрастает. Такая «гибридная» система нагрева, использующая не единственный источник энергии, позволяет сократить перерывы в пополнении теплового ресурса аккумулятора, уменьшить его размеры при сохранении расчетной надежности энергоснабжения.

Итак, внутри теплоаккумулятора в пространстве с максимальной температурой нагрева воздуха указанными преобразователями расположен парогенератор (см. рис. 2), состоящий из корпуса котла 1 с оребрённой поверхностью, коническим либо сферическим днищем 2, буферной ёмкостью 3, пароперегревателем 4 в виде коаксиальной камеры между стенкой корпуса и внутренним теплоизолированным цилиндром 5, оснащенной кольцевым перепускным клапаном 6 (например, из кремнийорганического полимера). Котел оснащен внешней теплоизолированной оболочкой 7 с рядом входных отверстий в её верхней части и вентилятором 8 внизу. Над парогенератором (это уже вне теплоаккумулятора) расположен турбинный агрегат 9. Паровая турбина 10 оснащена датчиком 11 передаваемого крутящего момента (с конструкцией, например, сходной с известной предохранительной пружинно-кулачковой муфтой осевого типа) Он кинематически связан с золотниковым устройством 12 в виде поворотного кольца с отверстиями и соосными с ними сопловыми элементами 13. Днище турбинного отсека также имеет коническую форму с кольцевым углублением в центральной части, где расположено «безнасосное» устройство возврата конденсата, сходное по конструкции с известным объёмным дозатором. Оно состоит из втулки 14 с расположенными по окружности сквозными полостями и плотно прилегающими к ней торцевыми дисками со смещенными по кругу – верхними относительно нижних – отверстиями (см. вид А). Сама втулка связана с турбиной понижающей передачей.

С валом турбины связан вентилятор (насос) 15 внешнего теплообменного контура.

Ввод микро-ТЭЦ в рабочий режим производится включением вентилятора. Поток горячего воздуха нагревает стенки и днище котла до кипения жидкости – в её строго определенном объёме, закрывающем только поверхность днища. Повышенным давлением образовавшегося пара часть жидкости перемещается в буферную ёмкость, сжимая в ней воздух до такого же давления. При этом уровень жидкости за её пределами понижается и изменяющаяся площадь теплопередачи от днища автоматически поддерживает этот баланс. По достижении минимального рабочего давления пара он, преодолевая силу обжима кольцевого клапана, проходит через отверстия внутреннего цилиндра в пароперегреватель и с увеличенной за счёт перегрева скоростью поступает в расположенные по кругу сопловые элементы. При этом в отсутствие нагрузки на генераторе турбина ускоренно набирает расчётные обороты. С появлением на ней возрастающей нагрузки зубчатый торец втулки отжимает венец датчика крутящего момента, который через симметрично расположенные рычажные механизмы поворачивает кольцо золотникового устройства, увеличивая подачу пара в сопловые элементы. Это (вместе с другими известными способами) обеспечивает постоянство частоты вращения турбинного вала.

При оптимальном соотношении скорости на выходе из сопловых элементов потока пара и окружной скорости лопаток турбины он, передав им свою кинетическую энергию, с остаточной скоростью попадает на внутреннюю стенку теплообменника 16, превращаясь в конденсат (см. выноску на рис. 2), который стекает по ней и далее – по конической поверхности днища корпуса турбинного агрегата – к устройству возврата конденсата. Здесь через отверстия он заполняет полости вращающейся с малой скоростью втулки, плотно закрытые в этот момент нижним диском, а в следующий момент, когда втулка повернута на некоторый угол и заполненные конденсатом полости оказывается плотно закрытыми сверху, они проходят над нижними отверстиями и конденсат стекает в котел по периметру буферной ёмкости, охлаждая её и предотвращая кипение в ней жидкости, чем поддерживается там режимное давление воздуха.

Следует сказать, что предельно короткий контур обращения рабочего тела в условиях замкнутого пространства котла и турбинного агрегата исключают его потери и, следовательно, устраняют необходимость постоянного контроля и пополнения его объема.

Теплообменник турбинного агрегата передает «сбросное» тепло для обогрева помещений. При умеренной температуре наружного воздуха он может работать в открытом контуре, обеспечивая тем самым и их усиленную вентиляцию. С похолоданием этот контур можно частично либо полностью замкнуть. А в особо холодную погоду (либо при пониженном расходе электроэнергии) можно добавлять тепло на обогрев непосредственно от теплоаккумулятора. В летнее же время можно использовать тепло от теплообменника турбинного агрегата для других нужд (сушка материалов, сельхозпродуктов, нагрев бассейна и т.п.).

Следует добавить, что с появлением новых («беспаровых») тепломеханических преобразователей (ТМП) вполне возможно их использование вместо вышеописанного паротурбинного блока (притом даже и при более низких температурах в теплоаккумуляторе). В этом плане представляет интерес более совершенный компактный ТМП с жидкостным рабочим телом по патенту RU №2613337, 2017 г. с повышенным (по крайней мере – на порядок) к.п.д., чем у рассмотренного в вышеупомянутой статье ТМП (патент RU №2442906, 2012 г.).

И уж самый последний вариант ТМП – только что опубликованный «Русский двигатель», (патент РФ № 2623728), отличающийся тем, что его ротор выполнен в виде цилиндрического биметаллического барабана, посаженного на упругую втулку с теплообменными каналами, примыкающими к золотниковому устройству, при этом барабан оснащен контактирующими с его поверхностью роликами. Он компактен, способен работать в режиме когенерации, имеет, как и его аналоги, систему рекуперации тепловой энергии.

Оба ТМП бесшумны, безопасны и практически не требуют никакого обслуживания.

Николай Ясаков, г. Новороссийск, energetika-veka@yandex.ru

Об авторе: инженер-энергетик, 15 лет проработал на промпредприятиях: в энергослужбах (последние годы в должности гл. энергетика), затем – начальник производственного отдела, гл. механик, гл. инженер, а потом на конструкторской работе – ведущий конструктор, руководитель конструкторского подразделения по механизации и автоматизации производства и новой технике, в завершении – гл. конструктор научно-исследовательского и проектного института. Имеет два десятка изобретений в области энергетики и экологии.

Источник: Энергосовет

22 votes + Голос за! — Голос против!

Частые перебои с подачей электроэнергии или невозможность обеспечить дачу бесперебойным электроснабжением, заставляют задуматься над вопросом использования альтернативной электроэнергией. Существующие варианты имеют свои сильные и слабые стороны. Подробнее об этом можно прочитать в статье.

  1. Способы организации автономного электричества для дачи
  2. Солнечные батареи для дачи
  3. Ветряк для дачи своими руками
  4. Топливные генераторы для дачи
  5. Зеленая система для дачи
  6. Самодельная электростанция для дачи

Способы организации автономного электричества для дачи

Очень многие собственники дач и частных домов не хотели бы зависеть от центрального электрического обеспечения по многим причинам. Это и высокая стоимость электричества, и перебои с подачей, частые поломки трансформаторов и зависимость устаревшего оборудования от погодных условий. По этим причинам все чаще владельцы дач задумываются об автономном электроснабжении. Перед установкой одной из автономных систем необходимо все проанализировать, рассчитать объемы потребления электричества в доме. Необходимо произвести замены осветительных приборов на более экономичные. После этого принимают решение о подборе вида автономного обеспечения.

Когда централизованное энергоснабжение не подходит по каким-либо причинам, есть смысл рассмотреть варианты автономного. Среди автономных источников снабжения электричеством можно выделить следующие:

  • солнечные панели;
  • ветроэлектрические установки;
  • топливные генераторные установки;
  • гидроэлектростанции.

Перед тем, как решить, на какой системе остановить свой выбор, следует внимательно ознакомиться с достоинствами и недостатками каждой.

Солнечные батареи для дачи

Для экономии средств можно использовать альтернативный вариант, который является дешевле — преобразование энергии Солнца в электричество. Солнечная батарея в таком случае – преобразователь.

Солнечные батареи — генератор постоянного тока, к ним подсоединены инверторы, преобразующие постоянный ток в переменный. Соединенные параллельно и последовательно они дают ток и напряжение. Это дает возможность солнечной батарее работать бесперебойно. Диоды не позволяют батарее разряжаться или перегреваться. Аккумуляторы сохраняют энергию, резистор контролирует заряд, предотвращая использование избыточной мощности.

Базовый комплект солнечной батареи представлен:

  • специальная панель;
  • контроллер заряда;
  • аккумуляторные батареи;
  • инвертор.

Основные преимущества использования солнечных батарей в следующем:

  • практичность и долговечность службы;
  • никаких дополнительный затрат в период эксплуатации;
  • расходуется нескончаемый природный запас;
  • минимум технического обслуживания;
  • высокий показатель коэффициента полезного действия;
  • работа в бесшумном режиме;
  • безопасность для природы.

Есть детали, которые ставят приоритетность использования солнечных батарей под сомнение:

  • зависимость от погоды, а именно солнечного света;
  • немалая стоимость конструкции;
  • инженерные навыки при установке.

Существуют разные виды солнечных батарей:

  • из монокристалического кремния — очень надежны, с долгим сроком эксплуатации, но из-за особых свойств достаточно дороги, по сравнению с другими видами батарей;
  • из мультикристалического кремния — достаточно долгий срок службы, около тридцати лет, с хорошими показателями коэффициента полезного действия;
  • из поликристалического кремния — средний срок службы, коэффициент полезного действия ниже, чем у предыдущих видов;
  • тонкопленочные батареи — недорогие, для местностей с пасмурной погодой и небольшим количеством солнечных дней, в основе батареи лежит специальная светопоглощающая пленка;
  • из аморфного кремния — показатели коэффициента полезного действия невысокие, но в основе батарей лежат фотоэлектрические преобразователи, позволяющие добывать недорогую электроэнергию;
  • из теллурида кадмия — благодаря пленочной технологии коэффициент полезного действия достаточно высокий, цена ниже, чем у батарей из кремния.

Батареи бывают:

  • маломощные — обеспечивают работу основных бытовых приборов и освещение дома;
  • универсальные — дополнительно к освещению отопление большей части дома;
  • высокомощные — покрывают все расходы потребления электричества и тепла.

Солнечные батареи применяются в различных сферах и отраслях:

  • подача света в жилых помещений и общественных организаций;
  • обеспечение энергией различного оборудования;
  • освещение улиц;
  • космическая отрасль;
  • автомобильная отрасль.

Позитивным явлением в использовании солнечных батарей при обеспечении жилища теплом следующее:

  • не требуется сжигание дров, угля, брикетов и это дает возможность существенно сэкономить деньги и не загрязнять окружающую среду;
  • такой способ отопления не станет причиной возгорания;
  • батареи способны функционировать и при незначительном поступлении солнечного света;
  • конструкция независима от энергосистемы;
  • система автоматизирована.

Оправдана ли установка солнечных батарей для частного дома или дачи? Как показывают наблюдения и отзывы пользователей, да. Особенно если они установлены в местности с преобладанием солнечной погоды. В период насыщенного солнца расходы на отопление и освещение можно покрыть полностью, в зимний период около восьмидесяти процентов энергии покрывается за счет энергии солнца. Экономия электричества на даче позволяет экономить бюджет.

Ветряк для дачи своими руками

Существует несколько вариантов ветряков:

  • горизонтальный;
  • вертикальный;
  • турбина.

Они имеют различия и сходства, положительные и отрицательные стороны, но принцип работы одинаковый для всех — преобразование энергии ветра в электричество, накопление в аккумуляторах и использование для потребностей.

Правильно расположенный ветряк дает возможность получать энергию ветра независимо от направления, важна только его скорость.

Принцип работы ветряка для дачи не сложный. Ветер дует на лопасти, к ротару прикреплен генератор, в его обмотке генерируется электрический ток. Он накапливается в аккумуляторах и позволяет питать электроприборы. Иногда устанавливается комплект и з ветрогенератора и солнечной панели.

В состав ветряка входит:

  • ротор;
  • редуктор;
  • защитный чехол;
  • хвостовая лопасть;
  • аккумулятор накопления энергии;
  • преобразователь напряжения;
  • инвертор.

Положительные стороны в использовании ветрогенератора для дома:

  • материальные затраты только на профилактику оборудования;
  • отлаженная работа ветровой станции не требует контроля и вмешательства;
  • почти по всей территории страны возможна продуктивная работа ветряка;
  • невысокий износ деталей.

Отрицательные стороны в использовании ветряка:

  • высокий уровень шума работающего прибора;
  • требует установки громоотвода;
  • необходимо заземление;
  • обязательная установка сигнальной лампочки;
  • вероятность повреждения частей ветряка при сильных ураганных ветрах.

Самый распространенный вид ветряных установок-горизонтальный. Его несложно изготовить в домашних условиях и коэффициент полезного действия этого ветряка достаточно высок. Минусом конструкции есть необходимость скорости ветра выше пяти метров за секунду для его работы.

Как показывает опыт и отзывы пользователей альтернативного энергообеспечения, ветрогенераторы перспективны и позволяют частично или полностью покрыть затраты в использовании энергии.

Топливные генераторы для дачи

Топливные генераторы могут помочь решить ряд вопросов, связанных со следующими обстоятельствами:

  • подача электричества для освещения жилища в ночное время;
  • для функционирования бытовой техники;
  • закачка воды из скважины или полив участка.

Это очень актуально для домов, отрезанных от системы электропитания после ураганов, в результате поломок и обесточивания при различных чрезвычайных ситуациях. Можно долгое время просидеть в ожидании восстановительных работ, а можно включить генератор и продолжить заниматься своими делами. Генератор обеспечивает бесперебойную подачу электроэнергии. Генераторы отличаются своими основными характеристиками, но имеют одинаковую конструкцию.

Преимущества использования генераторов в следующем:

  • гарантия результата — электричество;
  • компактные размеры и легкость переноски;
  • простота эксплуатации;
  • экономичность — энергия вырабатываемая аппаратом дешевле покупаемой у государства.

Основные виды генераторов:

  • бензиновый;
  • дизельный.

По типу работы выделяют:

  • синхронный генератор;
  • асинхронный генератор.

Проживание на территории дачного участка без электричества в настоящее время невозможно. Чтобы не остаться в самый неподходящий момент без электричества, можно использовать генератор.

Зеленая система для дачи

Если вас категорически не устраивают счета за отопление, электроэнергию или вы живете вдали от цивилизации, а протянуть электричество очень затратно- пришло время задуматься об автономном электрообеспечении. В Украине известная компания «Зеленая система» предлагает начинать использовать природные источники. Специалисты компании помогут спроектировать, рассчитать и подобрать оптимальную систему именно для вас.

Зеленый тариф — тариф на электроэнергию от частных лиц и за этот излишек государство платит частнику. На деле получается, что аккумулированная энергия солнца формируется в избытке, излишек поступает в общую сеть, в итоге частное лицо получает прибыль. Оформить все нужно правильно, для этого необходимо:

  • купить, установить солнечную батарею;
  • предоставить письма- уведомления и схему присоединения;
  • согласовать схему в Облэнерго;
  • оформить счет на оплату услуг;
  • запустить панель в течение пяти дней после прохождения оплаты;
  • оформить акт — договор купли — продажи электричества.

Самодельная электростанция для дачи

При удаленности от источников электропитания приходится самостоятельно придумывать варианты сооружения домашней электростанции. В основу этих конструкций чаще всего ложатся источники поступления альтернативной энергии: ветер, солнце, вода. Купить фабричный экземпляр электростанции иногда очень дорого и не всегда предлагаемые варианты удовлетворяют покупателя. В таком случае следует принять во внимание вариант самостоятельного изготовления станций по выработке электроэнергии.

Для создания ветряной электростанции своими руками следует создать ветродвигательную систему, подсоединить генератор и активизировать систему накопления энергии. Для домашней станции по выработке энергии целесообразнее использовать варианты с горизонтальным или вертикальным роторным вращением. Систему с вертикальным вращением проще сконструировать: вал, к которому крепятся параллельные лопасти. Для лопасти подходят материалы из листового железа. Их следует изогнуть в форме дуги, прикрепить к валу. Иногда используется дополнительный механизм по изменению угла лопастей в процессе работы, благодаря чему регулируется воздушное сопротивление. Это помогает избежать разрушения ветряка при наличии очень сильного ветра. Схема автономного энергосбережения поможет построить конструкцию правильно.

Самодельная солнечная электростанция представляет соединение солнечной батареи непосредственно с системой аккумулирования и расходования электричества. Самым дорогостоящим в данной конструкции являются солнечные панели. Необходимо правильно соединить части станции, защитить солнечные элементы, поместив конструкцию в специальный отсек. Станцию следует установить в самом подходящем месте, где энергия солнечного света будет максимальной.

Основное достоинство водяной электростанции – независимость выработки энергии от погодных условий, как с солнечной и ветровой электростанцией. Получение энергии воды – стабильно. Но все равно следует установить систему накопления выработанной энергии. Для построения конструкции необходимо приобрести такие части:

  • лопастная установка;
  • электрический генератор;
  • соединитель.

В качестве генератора можно использовать вал автомобиля. В конце статьи можно посмотреть видео о том, как самостоятельно обеспечить электроснабжение дачи.

Неэффективная подача электроэнергии, перебои напряжения, частые поломки трансформаторов или отключение электричества больше не будет проблемой при наличии домашней электростанции альтернативного электроснабжения. Изучив плюсы и минусы каждого виды конструкций, можно принять решение о целесообразности установки какого-либо прибора для аккумулирования энергии из природных источников.