Терморегулятор для теплиц

Содержание

Датчики температуры (термодатчики) для теплицы

В качестве преобразователей температуры в электрический сигнал используются различные термодатчики — терморезисторы, термотранзисторы и т. д. Сопротивление этих датчиков пропорционально (прямо или обратно) температуре окружающей среды.

Для самостоятельного изготовления термодатчиков можно использовать отрицательное свойство транзисторов — уход их параметров от температуры. В транзисторах ранних выпусков этот уход был настолько велик, что оставленный на солнце транзисторный радиоприемник начинал издавать искаженный звук, а через некоторое время или замолкал вообще, или просто хрипел.

Это происходило оттого, что нагревшись, транзисторы начинали пропускать существенно больший ток, рабочие точки транзисторов смещались и радиоприемник переставал работать.

Это свойство транзисторов с успехом можно использовать при изготовлении своими руками термодатчиков для теплицы и не только их. И чем больше уход параметров транзистора от температуры, тем более чувствительным получится датчик. Для термодатчиков подойдут транзисторы ранних выпусков — МП15А, МП16Б, МП20Б, МП41А, МП42Б, МП25А.Б. МП26А.Б, МП416Б, ГТ308Б, П423, П401-403.

При использовании их в качестве датчиков не требуется какой-либо доработки и преобразование температуры в электрический сигнал обеспечивается определенным включением транзистора в электронную схему. Чтобы получить представление о работе транзистора в качестве термодатчика, проведем небольшой эксперимент.

Соберем схему своими руками по рис. З.а (цоколевка большинства перечисленных транзисторов показана на рис. 3,б) и подключим к источнику питания. Если под рукой не окажется сетевого источника питания, можно использовать батарею «Крона» или две последовательно включенные батареи от карманного фонаря. Вольтметром будем контролировать напряжение на резисторе 5,1 кОм.

Отметим величину напряжения при подключении к схеме источника питания. Подогреем корпус транзистора паяльником не касаясь его — напряжение на резисторе начинает расти. Отведем паяльник в сторону — через некоторое время стрелка вольтметра вернется на прежнее место. Если постоянный резистор 5,1 кОм заменить на переменный, получим возможность изменять уровень напряжения на подвижном контакте при заданной температуре среды в теплице.

Но первый эксперимент показывает, что изменение напряжения на резисторе 5,1 кОм мало, а транзистор приходится сильно нагревать. Если увеличить это изменение напряжения при небольшом нагреве транзистора, то в принципе решается задача включения соответствующей нагрузки.

Увеличить это изменение напряжения можно, если собрать схему по рис. 4,а (на рис. 4,б показана цоколевка усилительного транзистора). Резистор 5,1 кОм заменим на 4,7 кОм, так как часть тока будет ответвляться в базу транзистора усилительного каскада.

Вращением движка потенциометра 4,7 кОм необходимо добиться максимального напряжения на колллекторе транзистора КТ315. Опять подогреем транзистор МП25Б — напряжение на коллекторе упадет почти до нуля и довольно быстро, причем при меньшем нагреве термодатчика. Уберем паяльник — напряжение так же быстро восстановится.

Из этих нехитрых экспериментов можно сделать следующие выводы.

  1. При нагреве транзистора МП25Б ток через него меняется — это регистрирует вольтметр в виде изменения напряжения на резисторе, включенном последовательно с транзистором МП25Б. Значит, этот транзистор может быть использован в качестве термодатчика при повышении температуры окружающей среды.
  2. Чтобы получить командный сигнал, т. е. большое изменение напряжения за короткий промежуток времени при малом нагреве (при малом изменении температуры окружающей среды), необходим усилитель, управляемый термодатчиком.

Из этих выводов следует, что на основе транзистора МП25Б, используемого в качестве термодатчика, и усилителя напряжения с большим коэффициентом усиления, можно создать электронный термометр для контроля и регулирования температуры внутри теплицы при ее повышении. Попросту говоря, такая схема в состоянии вовремя включить вентилятор и проветрить теплицу, оранжерею или замкнутый объем, где установлена гидропонная установка — застекленный балкон или лоджия.

А как быть, если температура среды понизится и нужно включать не вентилятор, а калорифер, чтобы поднять температуру?

Поменяем местами термодатчик и переменный резистор и включим последовательно с ним еще один на 36 кОм (рис. 5). С помощью движка потенциометра добьемся максимального напряжения на коллекторе транзистора KT315.

Нальем в чашку немного холодной воды, бросим кусочки колотого льда и опустим в воду термометр и транзистор МП25Б так, чтобы вода не касалась выводов транзистора. Через 1…2 мин корпус транзистора остынет и вольтметр покажет быстрый спад напряжения почти до нуля.

Достанем кусочки льда из чашки и дольем теплой воды до прежнего уровня. Через некоторое время температура воды и корпуса транзистора восстановится и вольтметр отметит быстрый рост напряжения до первоначального уровня. Схема вернулась в исходное положение.

Из этих опытов следует: при охлаждении транзистора МП25Б ток через него также меняется, но в обратную сторону и при перемене места подключения транзистора МП25Б в прежней схеме его можно использовать в качестве термодатчика при понижении температуры.

И здесь напрашивается основополагающий вывод: на основе транзистора МП25Б, используемого в качестве термодатчика и усилителя с большим коэффициентом усиления, можно создать электронный термометр для контроля и регулирования температуры в теплице при ее понижении. Эта схема вовремя включит калорифер или систему обогрева почвы.

Усилитель же с большим коэффициентом усиления необходим для включения нагрузок при малейшем изменении температуры (0,5…2 °С). Датчики воздушных термометров представляют собой собственно транзисторы указанных выше типов. Необходимо отметить, что чем выше статический коэффициент передачи тока транзистора (коэффициент усиления), тем чувствительнее датчик.

Датчик температуры почвы — такой же транзистор, помещенный в стеклянную пробирку и залитый эпоксидным клеем до середины выводов, к которым припаяны отводящие провода. Места паек и выводы необходимо закрыть отрезками виниловых трубочек, плотно надвинув их до упора в корпус транзистора. Провода пропускаются через резиновую шайбу (можно использовать резиновые клапаны от кранбукс), которая плотно вставляется в горло пробирки. Датчик готов.

Оглавление раздела:

Инструмент, расходники и измерительные приборы

Изготовление печатных плат

Подготовка радиодеталей к монтажу

Изготовление теплоотводов

Работа с микромощными микросхемами

Изготовление датчиков

Датчики освещенности, освещение в теплице

Датчики температуры воздуха и почвы для теплиц

Датчики влажности для теплицы

Анализирующие блоки автоматической системы.

Блоки гальванической развязки

Блоки питания

Изготовление корпусов и конструкций электронных блоков

Сборка блоков и проверка их работоспособности

Проверка блоков питания

Проверка блоков автоматики микроклимата в теплицах

Проверка сигнализатора нарушений энергоснабжения

Калибровка датчиков температуры и влажности в теплице

Монтаж автоматической системы обеспечения микроклимата

В большинстве случаев устанавливаются так называемые терморегуляторы, ставшие одним из самых важных компонентов, требуемых для получения хорошего урожая.

Для чего нужна терморегуляция в теплице?

В теплицах очень важно поддерживать температуру воздуха, а также почвенного слоя на определенном уровне вне зависимости от того, какая овощная культура в них выращивается.

Благодаря обеспечению круглосуточного регулирования температурного режима с учетом вида растения, выращиваемого в данном приспособлении, можно получить достаточно высокий урожай.

В противном случае, при резких перепадах температуры воздуха, замерзании, а также перегреве слоя почвы, нет смысла использовать теплицы.

Ведь понижение температуры служит причиной того, что зелень намного хуже начинает усваивать из грунта все необходимые питательные вещества, а ее повышение приводит к тому, что растение начинает либо стремительно идти в рост, либо практически полностью сгорает.

За счет регулирования температуры в теплице и постоянного контроля разных параметров внутри темпицы достигается максимальное развитие корневой системы у той или иной выращиваемой овощной культуры и их правильный рост. Кроме того, происходит правильное формирование плодов и уменьшаются сроки их созревания.

Для каждого вида растений необходима поддержка определенной температуры воздуха и почвы. В большинстве случаев такие показатели отличаются на пару градусов.

В среднем в теплицах устанавливается температура на уровне +20+22°С. Однако, подбирая наиболее оптимальный режим, следует обязательно принимать во внимание особенности культуры растения, выращиваемой в этом сооружении.

Как регулировать?

На сегодняшний день существуют специальные устройства, которые предназначаются для автоматического регулирования температурного режима внутри теплицы.

Но данное оборудование иногда оказывается слишком дорогим для того, чтобы экспортировать его, тем более, если теплица не одна.

В таких случаях можно воспользоваться более дешевыми и достаточно простыми методами, позволяющими эффективно снизить или повысить температуру. К тому же стоит отметить, что некоторые из них являются более действующими по сравнении с современными техническими устройствами.

Для того чтобы довольно быстро поднять температуру воздуха в сооружении, необходимо воспользоваться одним из следующих способов:

  1. Укрытие теплицы дополнительным слоем полиэтиленовой пленки с целью создания воздушной прослойки, не реагирующейна различные факторы окружающей среды.
  2. Внутри делается так называемая вторичная теплица — к заранее подготовленной конструкции крепится дополнительное накрытие, таким образом, чтобы оно находилось непосредственно над поверхностью растений.
  3. Тщательное мульчирование почвенного слоя дает возможность с помощью полиэтиленовойпленки либо спанбонда черного цвета притягивать тепло к растениям.

Также есть методы, позволяющие при необходимости понижать уровень температуры внутри теплиц. К наиболее распространенным из них относятся:

  1. Не следует делать теплицы слишком длинными.
  2. Через фронтоны должен происходить свободный доступ воздушных потоков из окружающей среды.
  3. Сооружение обрабатывается специальным меловым раствором.
  4. Поливание выращиваемых овощных культур достаточно большим количеством воды в утреннее время.

Если же используются автоматические устройства, то можно воспользоваться такими эффективными способами, как правильное управление системой, предназначающейся для отопления теплицы, а также открывание форточек после того, как терморегулятором будет подана соответствующая команда.

Варианты регулятора температуры в теплице

В наше время производятся терморегуляторы нескольких разновидностей:

  1. Электронные.
  2. Сенсорные.
  3. Механические.

Они отличаются друг от друга особенностями конструкции и принципом функционирования механизма.

Терморегулятор для теплицы механический представляет собой прибор, задача которого заключается в регулировании работы климатического оснащения с целью обеспечения поддержки определенных температурных параметров.

Его можно использовать не только для отопления, но еще и для охлаждения тепличного помещения.

Его особенность состоит в том, что отдельный прибор является абсолютно независимым. В большинстве случаев устройство изготавливается в виде внешнего электроустановочного оборудования, монтируемого непосредственно в самой теплице.

На электронных терморегуляторах роль датчика исполняет терморезистор. Главным преимуществом приборов данного типа называют точность в подлержании температурного режима. Ведь они способны реагировать даже на самые незначительные изменения.

Таким образом, можно существенно сэкономить на расходах электроэнергии, которая используется для отопления теплицы.

С помощью сенсорных терморегуляторов можно задавать определенное время работы системы отопления. Кроме того, в разное время можно устанавливать различную, наиболее подходящую температуру. Такие устройства, как правило, программируется на достаточно длительный промежуток времени — есть возможно настроить нужный режим на неделю, а в некоторых моделях и на дольше.

А тут видео про самодельный терморегулятор для теплицы (регулировка температуры с помощью открывания форточек).

Принцип действия

Основным элементом конструкции терморегулятора, вне зависимости от его вида, является специальный блок регулировки температуры, который функционирует с учетом показаний измерений датчиков, подключенных к нему.

Простой терморегулятор для теплицы: схема.

Действие прибора происходит по следующей схеме: к отопительной системе поступает сигнал от терморегулятора, который автоматически обрабатывает показания, измерянные несколькими датчиками. В результате этого мощность работы системы может либо снизиться, либо увеличиться.

Терморегуляторы — это незаменимая вещь для того, чтобы получить высокий урожай овощей, ягод и зелени, выращиваемых в теплицах.

Тут рассказывается об автоматической форточки для теплицы своими руками.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.